
Accelerating Full Configuration Interaction Calculations for Nuclear

Structure∗

Philip Sternberg† Pieter Maris‡ Esmond Ng† Masha Sosonkina §

Hung Viet Le§ James Vary‡ Chao Yang†

July 7, 2008

Abstract

One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI)

method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain

exact answers - either directly or by extrapolation. The lowest eigenvalues and corresponding eigenvectors for

very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional

experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient

and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe

the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear)

as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate

the current capability of MFDn and report the latest performance improvement we have achieved. We will also

outline our future research directions.

1 Introduction

The direct solution of the quantum many-body problem transcends several areas of physics and chemistry. Nuclear

physics faces the multiple hurdles of a very strong interaction, three-nucleon interactions, and complicated collective

motion dynamics. We aim to solve for the structure of light nuclei addressing all three hurdles simultaneously by

direct diagonalization of the nuclear many-body Hamiltonian in a harmonic oscillator single-particle basis.

The main tool we use to study nuclear structure is the software package MFDn (Many Fermion Dynamics

for nuclear structure) developed by Vary and his collaborators at Iowa State University [7, 8]. In MFDn, the

∗The computational results presented was obtained at the National Energy Research Scientific Computing Center (NERSC), which is
supported by the Director, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under contract number
DE-AC02-05CH11232. Research was supported in part by the UNEDF SciDAC Collaboration under DOE Grant DE-FC02-07ER41457.

†Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
‡Department of Physics, Iowa State University, Ames, IA 50011.
§Ames Laboratory, Iowa State University, Ames, IA 50011

1

nuclear Hamiltonian is evaluated in a large harmonic oscillator single-particle basis and diagonalized by iterative

techniques to obtain the low-lying eigenvalues and eigenvectors. The eigenvectors are then used to evaluate a suite

of experimental quantities to test accuracy and convergence issues. In several respects, the approach is similar

to the Full Configuration Interaction (FCI) method in other fields. We often obtain convergence, either by direct

diagonalization or simple extrapolation, and we then claim we have the result of a FCI calculation.

One key feature of a FCI calculation is the large dimension of the matrix Hamiltonian it can produce. The

dimension of the matrix characterizes the size of the many-body basis used to represent a nuclear many-body

Hamiltonian. In general, the larger the basis set, the higher the accuracy of the energy estimation and other

computable quantities one can obtain. For example, in order to directly calculate the binding energy of 12C to an

accuracy of 1 MeV with a realistic nucleon-nucleon interaction, we estimate the size of the harmonic oscillator basis

would be about 1012.

Despite its large dimension, the Hamiltonian matrix produced in a FCI calculation is sparse, meaning the matrix

contains a large number of zero entries. Therefore, the computational method used to solve the matrix eigenvalue

problem must take advantage of the sparsity structure of the Hamiltonian. The large dimension and the irregular

sparsity structure of the Hamiltonian matrix pose a significant challenge to the algorithmic design, data structure

specification, and parallelization and memory management strategies in MFDn for large-scale distributed-memory

computer systems. Furthermore, because the sparsity pattern of the matrix is not known in advance, we must

determine it quickly during runtime. The naive approach of probing each matrix element exhaustively (to see if it

is zero) is prohibitively expensive. Fortunately, the inherent combinatorial structure of the problem allows us to

develop an efficient scheme that can identify large blocks of zeros without checking each individual element within

these blocks.

The original design of the MFDn code took into account the standard parallel computing issues such as commu-

nication and load balancing. The code has run successfully on as many as 15,400 CPUs and has solved problems

with more than 109 degrees of freedom. However, our recent investigation as part of the US Department of Energy’s

Scientific Discovery through Advanced Computing (SciDAC) Program has identified a number of areas that can be

further improved. In this paper, we will describe the general computational strategies employed in the design of

MFDn as well as a number of techniques we recently developed to accelerate the computational speed of MFDn. We

will demonstrate the current capability of MFDn and report the performance improvement we have achieved. We

will also suggest a number of future research directions that will allow us to tackle even more challenging problems

and advance the frontier of computational nuclear science.

2

2 Numerical method

The structure of an atomic nucleus with k nucleons is described by a many-body wavefunction Ψ(r1, r2, · · · , rk),

where rj ∈ R
3, j = 1, 2, · · · , k. The wavefunction satisfies the many-body Schrödinger equation

HΨ(r1, r2, ..., rk) = λΨ(r1, r2, ..., rk), (1)

where H is a many-body Hamiltonian that relates a nucleus configuration defined by Ψ to the energy of the system.

We denote the energy of the system by λ. The many-body Hamiltonian H is defined as

H =
1

k

∑

i<j

(pi − pj)
2

2m
−

k
∑

i<j=1

Vn(ri − rj), (2)

where m is the nucleon mass, pi is a momentum operator, and Vn(ri − rj) is a two-body potential operator that

describes the interaction between the ith and jth nucleons. A more accurate treatment of the problem may include

3-body interacting potentials. Clearly, the wavefunction Ψ is an eigenfunction of H associated with the eigenvalue

λ. It is normalized so that
∫

Ω
|Ψ(r1, r2, ..., rk)|2dr1dr2 · · ·drk = 1, where Ω = Ω1 × Ω2 · · · × Ωk and Ωi ⊆ R

3.

Furthermore, the integral
∫

∆Ω
|Ψ(r1, r2, ..., rk)|2dr1dr2 · · ·drk represents the probability of finding nucleons 1, 2, · · · , k

simultaneously in ∆Ω ⊆ Ω.

In addition to the normalization constraint, Ψ(r1, r2, ..., rk) must also satisfy, among several conditions that we

will describe later, the antisymmetry requirement: Ψ(r1, · · · , ri, · · · , rj , · · · , rk) = −Ψ(r1, · · · , rj , · · · , ri, · · · , rk).

When appropriate boundary conditions are defined for (1), the energy λ of the system becomes quantized and

assumes a discrete set of values.

For nuclei that consist of a few nucleons (less than five), there are several methods to solve (1) directly. However,

as k becomes larger, the size of the problem will become so large that approximate methods are necessary. One way

to overcome the dimensionality explosion is to project the many-body Hamiltonian into a lower dimensional subspace

S that contains a set of basis functions {Φi(r1, r2, · · · , rk)}mi=1. Choosing an appropriate set of basis functions is the

key to obtaining accurate approximations to the eigenvalues and eigenfunctions of (2). The basis functions used in

MFDn are Slater determinants defined as

Φa(r1, r2, ..., rk) =
1√
k!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φa1
(r1) φa2

(r1) . . . φak
(r1)

φa1
(r2) φa2

(r2) . . . φak
(r2)

...
...

...

φa1
(rk) φa2

(rk) . . . φak
(rk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3)

where φai
is the eigenfunction associated with the ai-th eigenvalue of a (single-particle) harmonic oscillator Hamil-

3

tonian h = p2/2m + vh(r), where vh(r) is quadratic with respect to r. The use of Slater determinants is a standard

technique used in quantum mechanics. In quantum chemistry, a sufficiently large subspace expansion using the Slater

determinant basis is known as the full configuration interaction (FCI) calculation.

In this paper, we will define the index of Φa(r1, r2, ..., rk) by a strictly increasing k-tuple of integers, i.e. a =

(a1, a2, · · · , ak), where ai is simply the index of the single-particle eigenfunction that appears in the ith column of

the Slater determinant. We will refer to Φa(r1, r2, ..., rk) or simply a as a many-body basis state. We will call each

component of a a single-particle state. In a computer implementation, a can be represented by a binary string. The

ai-th elements of the string are set to one for i = 1, · · · , k, while all other elements are set to zeros.

If the index of the maximum allowed single-particle energy (eigenvalue counting degeneracy) is amax, the total

number of different Φa(r1, r2, ..., rk) is

(

amax

k

)

, which can be extremely large. However, a majority of these

functions can be eliminated because they do not satisfy the additional constraints (based on traditional symmetries

of H) regarding the magnetic projection, parity and total oscillator energy [9]. A many-body basis state satisfying

all three of these conditions is a valid state. We will denote the set of all valid many-body basis states {a} by A.

The size of A will be denoted by n = |A|. Suppose the desired many-body wavefunction can be well represented by

a linear combination of the basis functions Φa (a ∈ A), i.e.,

Ψ =
∑

a∈A

caΦa, (4)

where ca ∈ R, we can then solve (1) by computing eigenpairs of a projected Hamiltonian Ĥ , where

Ĥa,b =

∫

Ω

(Φ∗
aHΦb)dr1dr2 . . . drk. (5)

Because H is self-adjoint, Ĥ is real symmetric. The eigenvector of Ĥ associated with the desired eigenvalue (energy)

gives the coefficients ca in (4).

Clearly, the dimension of Ĥ , which is the total number of valid many-body basis states n, depends on the total

number of nucleons (k) contained in the nucleus of interest, on the largest single-particle state (amax) allowed in

Φa(r1, r2, ..., rk) subject to the symmetry constraints, and on a chosen limit of total oscillator quanta (Nmax) above

the minimum for the nucleus. The value of amax is fixed by first selecting Nmax. For a large nucleus and large amax

value, n can be extremely large. For example, for an oxygen nucleus that consists of 8 protons and 8 neutrons, n is

nearly 109 if amax = 572 (corresponding to Nmax = 8). However, the number of nonzero elements in Ĥ is typically

very small, as we will show below.

Note that the integral in (5) consists of both one-body integrals involving the first term of (2) and two-body

integrals involving the second term of (2). It follows from the mutual orthogonality of all single-particle eigenfunctions

4

φℓ (ℓ = 1, 2, · · · , amax) that a one-body integral in (5) becomes zero when a and b differ by more than one single-

particle state, and a two-body integral becomes zero when a and b differ by more than two single-particle states.

This observation allows us to determine many of the zero entries of Ĥ without evaluating the numerical integral in

(5).

Empirical evidence suggests that the probability of two randomly chosen but valid many-body basis states sharing

more than k − 2 single particle states is relatively low. As a result, Ĥ is extremely sparse. For a fixed Nmax value,

including three-body interactions in the potential term of (2) will produce more nonzero elements in Ĥ . However, as

Nmax increases, the overall percentage of nonzero elements is still extremely low. Figure 1 shows both the growth of

the matrix dimension (n) with respect to Nmax and the growth of the number of nonzero elements in Ĥ with respect

to n for a variety of nuclei. In practice, we observe that the number of nonzeros in Ĥ is proportional to n3/2.

Figure 1: The plot on the left shows the growth of the matrix dimension (n) with respect to Nmax for a variety of
nuclei. The plot on the right shows the growth of number of nonzero matrix elements in Ĥ with respect to n for a
set of nuclei as a function of Hamiltonian matrix dimension. Rank 2 (3) signifies NN (NN+NNN) interactions are
present.

We should point out that locations of the nonzero elements of Ĥ do not follow a structured pattern one often sees

in the finite difference or finite element discretization of differential operators. In fact, the locations of these nonzero

elements are not known in advance. They must be determined efficiently at runtime. This is a major challenge of

the nuclear FCI calculation that we will address in the next section.

A natural algorithm for computing a selected few eigenvalues and their corresponding eigenvectors of Ĥ is an

iterative method that does not require storing all n × n matrix elements. In nuclear physics, the eigenvalues of

interest are those at the low end of the spectrum of Ĥ because they describe the ground and the first few excited

states of the nucleus. In MFDn, these eigenvalues are computed by the Lanczos method, which projects Ĥ into a

Krylov subspace K(Ĥ, v0) = span{v0, Ĥv0, · · · , Ĥℓ−1v0} of dimension ℓ≪ n, where v0 ∈ R
n is an arbitrarily chosen

starting vector. If V = (v1, v2, · · · , vℓ) consists of an orthonormal basis of K(Ĥ, v0), the Lanczos method can be

5

described by

ĤV = V T + feT
ℓ , (6)

where T = V T ĤV is an ℓ × ℓ tridiagonal matrix that represents the projection of Ĥ into K(Ĥ, v0), f is a residual

vector that satisfies V T f = 0, and eℓ is the ℓ-th column of the identity matrix. Approximations to eigenvalues of Ĥ

can be obtained by computing eigenvalues of the much smaller matrix T . If q is an eigenvector of T associated with

the eigenvalue θ, then z = V q is the approximation to an eigenvector of Ĥ .

It is well known that well separated extremal eigenvalues converge rapidly in the Lanczos iteration [5]. Conver-

gence can be further improved by carefully choosing the starting vector v0 and refining it using the implicitly restarted

Lanczos algorithm developed in [6] and implemented in [4]. The major cost of the algorithm is the matrix-vector

multiplication w← Ĥv required at each iteration.

In a standard application, one performs a sufficient number of Lanczos iterations to obtain the lowest fifteen

states of the nucleus under investigation. Following that, the fifteen eigenvectors are employed to evaluate a suite of

quantities to compare with experimental data. A standard suite includes electromagnetic moments and transition

rates as well as weak interaction transition matrix elements.

3 Implementation details

In this section, we will briefly describe the distributed-memory parallel implementation of the nuclear FCI calculation

developed in MFDn and present several recently developed techniques that have led to a significant performance

improvement of the FCI calculation.

The recent modifications we made in MFDn were primarily aimed at improving the efficiency of the calculation,

which is measured in terms of processing speed (i.e., elapsed time). We focused on the in-core version of the code in

which the nonzero elements of Ĥ are generated once in parallel and stored in the local memory of different processors.

Although the use of this version is limited by the amount of memory available on each processor, it is significantly

faster than the alternative approaches that would require either storing the matrix elements on disks and repeatedly

retrieving them through I/O in subsequent calculations, or computing the matrix elements on the fly whenever they

are needed.

Our discussion will focus on three main steps of the FCI computation:

1. The generation and distribution of the many-body basis states - This step essentially determines how the matrix

Hamiltonian is partitioned and distributed in subsequent calculations.

2. The construction of the sparse matrix Hamiltonian Ĥ - This step is performed simultaneously on all processors.

Each processor will construct its portion of Ĥ defined by the many-body basis states assigned to it. Because

6

the positions of the nonzero elements of the Hamiltonian is not known a priori, the key to achieving good

performance during this step is to quickly identify the locations of these elements without evaluating them

numerically first.

3. The calculation of the eigenvalues and eigenvectors using the Lanczos iteration - The major cost of the Lanczos

iteration is the computation required to perform sparse matrix-vector multiplications of the form y ← Ĥx,

where x, y are both vectors. Performing efficient orthogonalizations of the Lanczos basis vectors is also an

important issue to consider.

The computational scheme we present here attempts to achieve scalable performance by maintaining a good load

balance among different processors and minimizing interprocessor communications. In addition, it also contains

several heuristics that reduce the number of integer and floating-point operations in the Hamiltonian calculation.

These heuristics are developed by exploiting the unique combinatoric properties of the many-body configurations.

Figure 2: The projected Hamiltonian Ĥ is partitioned and distributed among 6 processors.

3.1 Many-body basis state generation and distribution

Because Ĥ is symmetric, we generate and store only the lower triangular part of the matrix to minimize memory usage.

The lower triangular part of Ĥ is partitioned into rectangular blocks and distributed among different processors.

Figure 2 shows how submatrix blocks are mapped to different processors. Each block is labeled by a processor

identification (pid) number that ranges from 1 to np, where np is the total number of processors in use. Due to the

particular distribution pattern shown in Figure 2, the choice of np is not arbitrary. If we let nd be the number of

diagonal blocks in the partition, then np = nd(nd + 1)/2. In the following, we will refer to the processors to which

the diagonal blocks of Ĥ are assigned as the diagonal processors. They will be labeled by 1 through nd. In MFDn,

row and column communication groups are created to allow information to be passed among processors associated

with row or column blocks of Ĥ .

7

3.1.1 Load balance objectives

The size and nonzero structure of each sub-matrix block of Ĥ are completely determined by how the many-body

basis states are ordered and partitioned. If all valid many-body basis states are partitioned into nd disjoint subsets

S1, S2, · · · , Snd
, then the nonzero structure of the (i, j)th sub-block in Figure 2 is determined by the many-body

basis states contained in Si and Sj .

To achieve a good load balance among different processors in terms of both memory usage and the number of

floating-point operations performed in subsequent calculations, we would like to generate and partition the many-

body basis states so that

• |Si| is roughly the same for all 1 ≤ i ≤ nd, and

• the number of many-body basis state pairs (a, b) ∈ Si × Sj that will produce a nonzero Ĥa,b is roughly the

same for all 1 ≤ j ≤ i ≤ nd.

3.1.2 Enumeration of many-body basis states

Before we discuss how these two objectives can be achieved in an efficient manner, we first describe how many-

body basis states are generated. The easiest way to generate all many-body basis states is to enumerate them in a

lexigraphical order defined below. Recall from Section 2 that a many-body basis state for a nucleus with k nucleons

is a strictly increasing k-tuple of integers in the interval [1, amax], where amax is the maximum single-particle state

allowed. A many-body basis state a = (a1, a2, . . . , ak) is said to be lexigraphically less than another many-body basis

state b = (b1, b2, . . . , bk) if and only if there is a j for which aj < bj and ai = bi for all i < j. For example, if amax = 9,

then (1, 3, 4, 8) is succeeded by (1, 3, 4, 9), which is in turn succeeded by (1, 3, 5, 6), and (1, 3, 8, 9) is succeeded by

(1, 4, 5, 6).

We begin the enumeration process by first finding the lexigraphically smallest many-body basis state that passes

the validity test (which involves checking whether the magnetic projection, parity and total oscillator energy con-

straints are satisfied.) A new many-body basis state is created by incrementing the previously generated many-body

basis state a = (a1, a2, . . . , ak). The incrementing process proceeds from the tail of a towards its head by raising

one single-particle state aj at a time subject to the constraints that aj cannot exceed amax and the ascending order

among all single-particles states in the k-tuple must be preserved. To be specific, if aj+1 is larger than amax or aj−1,

we will increase aj−1 instead. A new many-body state is checked for magnetic projection, parity, and total oscillator

energy constraints. Only the states that pass these validity tests are kept.

Because protons and neutrons are treated separately in MFDn, a combined many-body basis state is represented

by a disjoint set of integers associated with the proton and neutron single-particle states respectively. In other

words, we can think of an MFDn many-body basis state as a pair of strictly increasing tuples with integer entries

8

Figure 3: An uneven distribution of the nonzero elements of Ĥ resulting from lexicographic order (left) and a more
evenly distributed nonzero Ĥ resulting from cyclic assignment of many-body basis states.

that belong to [1, amax]. Incrementing a combined state can therefore be expressed by first attempting to increment

the neutron many-body basis state, and if it cannot be incremented, incrementing the proton many-body basis state

and resetting the neutron many-body basis state to its lowest possible values.

3.1.3 Cyclic distribution of many-body basis states

Let n be the total number of valid many-body basis states for a particular nucleus and choice of amax. A naive way

to distribute these many-body basis states is to divide the lexicographically ordered states evenly into nd groups S1,

S2, · · · , Snd
so that all many-body basis states in Si are lexicographically less than all many-body basiss state in

Sj for i < j. Although this approach satisfies the first load balance objective discussed in Section 3.1.1, it tends

to violate the second objective, which requires each (distributed) submatrix block to have approximately the same

number of nonzero elements.

A more favorable distribution scheme, which is implemented in MFDn, is to assign many-body basis states to

S1, S2, · · · , Snd
in a cyclic fashion so that two adjacent states in the lexicographically ordered sequence will not

be assigned to the same Si. To be more specific, the ith valid many-body basis state will be assigned to Sj for

j = mod(i − 1, nd) + 1. The reason why this distribution scheme tends to produce a more even distribution of the

nonzero matrix elements lies in the fact that in the overwhelming majority of the cases, consecutive many-body basis

states a and b will differ only in their last one or two single-particle states. As a result, if Ĥc,a is a nonzero element,

Ĥc,b is also likely to be nonzero. Hence, by assigning a and b to different groups (processors), we are likely to achieve

similar sparsity pattern on all processors. Figure 3 shows how cyclic distribution produces a more load balanced

distribution of the nonzero elements of Ĥ for a small test case.

9

3.1.4 Parallel generation of many-body basis states

In the previous implementation of MFDn, each many-body basis state is enumerated and validated by all the diagonal

processors simultaneously. Only the processor that satisfies the cyclic mapping with respect to the valid many-body

basis state just generated will keep the state and broadcast it to other processors that are in the same block row or

column.

Although generating all many-body basis states in such a fashion ensures that

max
i,j

∣

∣

∣

∣

|Si| − |Sj |
∣

∣

∣

∣

≤ 1, (7)

it is a sequential process because each diagonal processor must perform the same validity check on each many-body

basis state, which typically takes a nontrivial amount of time.

To speed up the many-body basis state generation, we developed a new generation scheme that performs the

validity check in parallel among all the diagonal processors. The main idea behind this scheme is to have each

diagonal processor perform validation only on every nd-th incrementally enumerated many-body basis state thereby

reducing the number of validity checks performed on each diagonal processor by a factor of nd.

To be specific, the ith diagonal processor starts the generation process by incrementing the smallest possible

many-body basis state (which may not be valid) i− 1 times so that each diagonal processor will possess a different

many-body state. After a validity check is performed, each valid state is kept on the processor on which it is generated

and broadcast to the processors that are grouped in the same block row or column. An invalid state is simply skipped.

Each processor will then increment the current many-body basis state nd times before performing another validity

check on the new state. Performing an nd-fold increment is necessary because it is generally nontrivial to identify a

many-body basis state that is nd positions away from another many-body basis state in a lexicographically ordered

sequence. Fortunately, incrementing a many-body basis state has low computational cost. This process continues

until all possible many-body basis states have been generated.

Because not all many-body basis states enumerated on each of the diagonal processor are valid, there is generally

no guarantee that (7) would hold. However, in practice, the relative standard deviation of the number of valid many-

body basis states stored on different processors is typically around 0.5%. The resulting load imbalance is minimal.

If in some cases better balance was required, the processors could redistribute the excess states with a negligible

amount of communication. In fact, in some cases the load balancing of nonzeros is better under this distribution

scheme than with the simpler cyclic assignment.

10

3.2 Hamiltonian construction

Once each processor receives two sets of many-body basis states Si and Sj that can be viewed as the row and column

indices of the matrix elements in the (i, j)th submatrix block of Ĥ , it can begin to construct its portion of Ĥ.

In MFDn, the construction of Ĥ is performed in two steps. In the first step, the locations of the potentially

nonzero elements of Ĥ are identified. The numerical values of these elements are calculated in the second step. In

the previous version of MFDn, a special compressed storage scheme that records the difference between row indices,

modulo n, was used to represent the distributed sparse Hamiltonian on each processor. In the most recent version,

we use the standard compressed column storage scheme [1] to store the matrix.

As we pointed out in Section 2, the mutual orthogonality of the single-particle eigenfunctions implies that the

integral in (5) is zero when Ĥ contains a K-body potential and when two many-body basis states a and b differ by

more than K single-particle states.

In the following, we will call a pair of combined proton-neutron many-body states that differ by no more than K

single-particle states an interacting pair. Checking whether a pair of many-body basis states is an interacting pair

can be achieved by a bitwise operation performed on binary representations of these states. Even though performing

such a bitwise operation is faster than evaluating (5) by numerical integration, the naive approach of performing

bitwise operations on all pairs of many-body basis states in Si × Sj is prohibitively expensive.

Because Ĥ is extremely sparse, it contains many blocks of zeros. The efficiency of Hamiltonian construction

can be greatly improved if we can identify a large block of zeros without performing bitwise operations for each

matrix element within such a block. This type of strategy has been developed in MFDn by partitioning the list of

single-particle states into g disjoint groups and creating blocks of many-body basis states by mapping each many-

body basis state a to a g-tuple (g < k) that serves as the identifier for the block to which a is assigned. In the

following we will illustrate how the g-tuple is defined given a partition P of single-particle states, and how a block

of zeros can be quickly identified by comparing two g-tuples. Moreover, we will show that the partition of the

single-particle states and the corresponding blocking of the many-body basis states can be performed recursively,

and a hierarchical multi-level partitioning scheme can lead to further performance improvement of the Hamiltonian

construction process.

Let A be the set of all valid many-body basis states. Recall that a many-body basis state can be represented

by a k-tuple a = {a1, a2, · · · , ak}, where 1 ≤ a1 < a2 < . . . < ak. Let P be a partition of a list of single-particle

states within [1, amax], i.e., P = {p1, p2, · · · , pg}, where the pi’s are pairwise disjoint subsets of [1, amax] such that

⋃

i=1,g pi = [1, amax]. We define a function BP : A → Z
g by BP (a) = (u1, u2, · · · , ug), where ui is the number of

elements of a that belong to pi. For example, if a = {1, 3, 4, 7, 8, 9} and

P = {{1, 2, 3}, {4}, {5}, {6, 7, 8, 9, 10}},

11

BP (a) = (2, 1, 0, 3). We call the g-tuple defined by BP (a) the P -configuration of a. Note that the maximum number

of P -configurations associated with a set of many-body basis states represented by k-tuples is the number of solutions

to the equation
g

∑

i=1

xi = k, (8)

where xi ∈ Z and 0 ≤ xi ≤ k. In practice, the exact number of P -configurations, which is also the number of column

or row blocks created for Ĥ , is far less than the number of solutions to (8). However, that number is generally

larger than g. Figure 4 illustrates how an artificially created small Hamiltonian is blocked by a partition of the

single-particle states listed below the figure.

(1,2,3,10)

(1,2,4,9)

(1,2,5,10)

(1,2,6,9)

(3,4,5,8)

(3,4,6,7)

(3,4,7,10)

(3,4,8,9)

(5,7,8,9)

(6,7,8,10)

(6,8,9,10)

(5,7,9,10)

{

[1-2],[3-4],[5-6],[7-8],[9-10]
}

(2,1,0,0,1)

{

(2,0,1,0,1)

{

(0,2,1,1,0)

{

(0,2,0,1,1)

{

(0,0,1,2,1)

{

(0,0,1,1,2)

{

(1
,2
,3
,1
0)

(1
,2
,4
,9
)

(1
,2
,5
,1
0)

(1
,2
,6
,9
)

(3
,4
,5
,8
)

(3
,4
,6
,7
)

(3
,4
,7
,1
0)

(3
,4
,8
,9
)

(5
,7
,8
,9
)

(6
,7
,8
,1
0)

(6
,8
,9
,1
0)

(5
,7
,9
,1
0)

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!
!

!

!
!

!
!

!
!

!

!
!

!
!

!
!

!

!
!

!
!

!
!

!

!
!

!
!

!
!

!

!
!

!
!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

Figure 4: Twelve many-body basis states are divided into six groups of size two according to a partition of [1, 10].
The 2× 2 blocks of zeros, as determined by this blocking scheme, are unshaded. Each interacting pair is designated
by a black circle.

It is not difficult to see that if Ĥa,b 6= 0, then
∥

∥BP (a) − BP (b)
∥

∥

1
≤ 2K, for any choice of P , where ‖BP (a)‖1

denotes the 1-norm of the g-tuple. On the other hand, if

‖BP (a)−BP (b)‖1 > 2K, (9)

then Ĥa,b must be zero.

Once the P -configurations for all many-body basis states are obtained, we can use the condition (9) to identify a

block of zeros by comparing two g-tuples associated with different P -configurations. If the 1-norm of the difference

between these two g-tuples is larger than 2K, the block indexed by these two P -configurations is a zero block. Hence

no pairwise comparisons are needed between many-body basis states that are mapped to these two P -configurations.

When the 1-norm of the difference between two P -configurations is less then or equal to 2K, the submatrix block

12

indexed by these two configurations may contain nonzero elements. However, this block may again be very sparse,

and if possible, we would like to avoid making every pairwise comparison just to identify the location of a very small

number of nonzeros. Therefore, we may apply the blocking scheme again within this block to identify smaller blocks

of zeros.

A finer partitioning of the initial blocks created by the mapping function BP (·) can be constructed by refining

the initial partition of the single-particle states P . The refinement simply divides some of the pi’s in P into disjoint

subsets of single-particle states. For example,

P1 = {{1, 2}, {3}, {4}, {5}, {6, 7, 8, 9, 10}},

gives a refinement of the initial single-particle partition P0 = {{1, 2, 3}, {4}, {5}, {6, 7, 8, 9, 10}}. Using the refined

partition P1, a many-body basis state a = {1, 3, 4, 7, 8, 9} is mapped to a 5-tuple BP1
(a) = (1, 1, 1, 0, 3).

It is easy to see that the refinement of P0 does not alter the coarser level block structure of the Hamiltonian

determined by the mapping BP0
(·). Hence, a multi-level blocking of the Hamiltonian that will allow us to quickly

identify a large number zero blocks of different sizes can be achieved by judiciously choosing a multi-level partition

of the single-particle states. Figure 5 gives a schematic illustration of what a three-level blocking of a Hamiltonian

will look like. The shaded blocks represent the finest level blocks that contain nonzero matrix elements. In this

particular case, a large block of zeros, the (2,2)-block bordered by solid lines, is identified at the coarsest level. Nine

intermediate-sized zero blocks can be found at the second level. Sixteen small zero blocks can be seen at the finest

level.

Figure 5: A three-level blocking of a portion of the Hamiltonian matrix Ĥ distributed to an off-diagonal processor.
The first (coarsest) level blocks are bordered by solid lines. The second level of blocks are bordered by thinner dashed
lines. The finest level blocks are bordered by dotted lines, and those blocks containing nonzeros are shaded.

As we will show in Section 4.3, the use of a multi-level partition leads to significant performance improvement

over a single-level partition, which was implemented in the previous version of MFDn. Our numerical experiments

13

also indicate that the amount of improvement can vary quite a bit among different partitions.

A practical question that remains to be addressed is how one should choose a partition of the single particle states

at each level so that a significant number of nonzero matrix elements can be quickly identified. A related question

is how many levels of partitions one should use. Ideally, at each level we want to check a relatively small number of

blocks, and in so doing determine that a large percentage of blocks at the next finer level are zero. A partition that

violates either of these properties will not give optimal performance. In practice, as the number of levels increases

the percentage of blocks that can be excluded at each level will decrease due to the discrete nature of the problem.

As illustrated by the timing results in Table 2, the benefit of adding partitions follows a trend of diminishing returns;

in fact, every six-level partition we have examined results in greater execution time due to an increase in the number

of block comparisons. As we tackle sparser matrices, the optimal number of partitions will increase, but there will

always be some threshold beyond which no performance improvement can be realized.

Currently, the multi-level partition of the single-particle states is determined manually for each type of nucleus.

Finding an optimal multi-level partition is a difficult problem that we will tackle in future studies.

3.3 The Lanczos iteration

MFDn uses the standard Lanczos algorithm to compute approximations to a few (typically 15 to 30) algebraically

smallest eigenvalues of Ĥ and the corresponding eigenvectors. The computational cost of the Lanczos iteration is

dominated by the matrix-vector multiplications (MATVEC) w ← Ĥv required to expand the Krylov subspace. To

perform this operation efficiently on a lower triangular processor grid laid out in Figure 2, each input vector is

partitioned among the diagonal processors. The sub-vector assigned to the ith diagonal processor is broadcast to

other processors that belong to the ith column and row groups; see Figure 6. As a result, the (i, j)th off-diagonal

processor will receive two sub-vectors vi and vj so that it can perform both wi ← Ĥi,jvj and wj ← ĤT
i,jvi, where Ĥi,j

is the local piece of the Hamiltonian constructed on the (i, j)-th processor. Collective communications are performed

among each row and column processor group to sum up contributions from all local computations. Due to the

cyclic distribution of the many-body basis states, all local pieces of the Hamiltonian Ĥ have approximately the same

number of nonzeros. The even distribution of the nonzero elements among all processors allows a good load balance

to be achieved for each MATVEC.

To eliminate the presence of spurious eigenvalues [5], MFDn performs full orthogonalization among the columns of

V in (6). As the number of columns in V increases, orthogonalization can become a computational bottleneck if it is

not effectively parallelized. To perform the orthogonalization process in parallel on all processors, MFDn remaps the

triangular processor grid to an nd×⌊(nd +1)/2⌋ rectangular grid, with new communicators defined for both the rows

and columns of this grid. Due to space limitation, the details of the mapping will be described in a future publication.

As an example, Figure 7 shows how a 15-processor triangular grid is mapped to a 5× 3 rectangular processor grid.

14

!
!

!
!!

"
"
"

"
""

BCast(v)

w ← L̂v#

!
!

!
!!

#
#

#

Reduce(w)

!
!

!
!!$$$

$$
$

BCast(v)

w ← L̂
T

v#

!
!

!
!!

%
%

%

Reduce(w)

Figure 6: The communication pattern for multiplying the lower triangular (left) and upper triangular (right) parts
of Ĥ with the distributed input vector v. The arrows indicate how v is broadcast among different processor groups
and how global sums are performed among different processor groups.

Columns of V are distributed in a cyclic fashion among the column groups of the rectangular grid. At the jth

Lanczos iteration (for j > nd), the orthogonalization process is carried out by performing inner product calculations

between Ĥvj and all (distributed) columns of V in parallel on all processors. Global sums are performed within

column groups to obtain h = V T (Ĥvj), with the components of h distributed among the row groups. An additional

global vector sum along the row groups is required to obtain f = Ĥvj − V h. The computational results we will

Figure 7: The mapping between a lower triangular 15-processor grid (left) to a 5×3 rectangular processor grid(right).
The numbers in the figure represent processor IDs.

report in the next section show that this type of parallelization allows the Lanczos iteration to scale almost linearly

to thousands of processors. However, such a scheme does not allow us to easily utilize level-2 BLAS operations as is

done in many eigenvalue packages, such as PARPACK (a parallel version of ARPACK [3, 4]). Because PARPACK

assumes a one-dimensional partition of the processors, orthogonalization can only be performed on the diagonal

processors. When a small number of processors are used, a version of MFDn that uses PARPACK to compute the

desired eigenvalues outperforms the existing MFDn calculation. However, when a large number of processors are

used to solve large problems, performing orthogonalization using only the diagonal processors becomes a bottleneck.

15

4 Computational Performance

In this section, we report the performance of MFDn before and after the recent algorithmic and implementation

improvements were made. All computations reported here were carried out on the Franklin cluster at NERSC.

Franklin is a distributed-memory parallel system with 9,660 compute nodes. Each compute node consists of a 2.6

GHz dual-core AMD Opteron processor with a theoretical peak performance of 5.2 GFlop/sec. Each compute node

has 4 GBytes of memory. We will first report the overall performance improvement achieved in the two versions of

MFDn, and then take a closer look at the impact of the multi-level partition of the Hamiltonian on the performance

improvement and the scalability of the computation.

4.1 Overall performance

Table 1 lists wallclock times used by MFDn to obtain the lowest 15 energy states associated with 6He, 12C, 13C and

16O. Two-body potentials (denoted by the symbol “NN” in the table) and a combination of two- and three-body

potentials (denoted by “NN+NNN”) were used in these calculations. In some of the calculations, we used a smaller

many-body basis set with Nmax set to 4. In others, we used a larger basis set with Nmax set to 14. The column labeled

by “old” refers to the timing collected for the pre-SciDAC version of the MFDn runs. The column labeled by “new”

refers to the timing collected for the new version of the MFDn code that includes both the improved parallel version

of the many-body basis generation procedure and a multi-level partitioning scheme for Hamiltonian construction.

These calculations were performed using various numbers of processors. The fifteen lowest eigenpairs were computed.

The total number of Lanczos iterations used was 400 for 6He with Nmax = 14 and 16O with Nmax = 8. For each

of the three cases of C, the number of Lanczos iterations used was 500. We can clearly see from this table that the

Nucleus Nmax potential type matrix dim CPU count old new
6He 14 NN 155,710,094 4,950 6,499 2,456
12C 4 NN 1,118,926 28 247 159
13C 4 NN+NNN 1,065,847 45 1,831 915
13C 6 NN+NNN 28,260,781 4,950 5,109 2,586
16O 8 NN 996,878,170 12,090 > 28,000 6,664

Table 1: MFDn timing (in seconds) for a range of realistic test problems.

recent changes we made in MFDn resulted in at least 50% improvement for the FCI calculations of all test cases.

Generally, we see greater performance improvement when the Hamiltonian becomes sparser as the result of either

an increased number of nucleons or an increase in Nmax. Similar performance improvement was observed on other

high performance computing platforms such as the Jaguar cluster at ORNL and the IBM Power 5 (Bassi) system at

NERSC.

16

4.2 Performance gain within the components of MFDn

Figure 8 gives a more detailed picture of the relative contribution from the various components of the MFDn code to

the overall performance improvement of the code on the 13C calculation with Nmax = 6 using three-body interactions.

The three areas in which we see improvement are setting up the basis, evaluating the Hamiltonian, and the Lanczos

process to compute the eigenstates of the Hamiltonian. The improvement in the basis setup time results from the

Figure 8: Performance improvement in sections of MFDn.

parallelization technique we discussed in Section 3.1.4. Previously the execution time of this part of the code was

independent of the number of processors used; the new parallel algorithm reduces the required time by approximately

a factor of 6.5.

By using a multi-level partitioning scheme as described in Section 3.2, the time to generate the Hamiltonian

(“Evaluate H” in Figure 8) is reduced dramatically. The potential improvement in execution time depends primarily

on the sparseness of the Hamiltonian, with greater gains possible for sparser matrices. Two of the directions in which

future scientific discoveries lie are larger nuclei and larger model spaces (i.e., larger values of Nmax); both of these will

lead to progressively sparser Hamiltonians. The other parameter affecting the sparsity of the Hamiltonian is whether

we are using two- or three-body interactions. The three-body Hamiltonian is denser than the two-body Hamiltonian

by approximately a factor of 30. While this does impact the speedup we can achieve with these improvements, the

increase in sparsity due to the other two factors is much more significant. We discuss a more detailed performance

analysis of this feature in Section 4.3.

The performance of the Lanczos iteration (“500 Lanczos” in Figure 8) is improved by at least 50%. Much of

this improvement can be attributed to using compressed column storage for the Hamiltonian rather than a custom

sparse matrix storage scheme. The additional performance gain is the effect of reordering the rows and columns of

the Hamiltonian according to a multi-level partition. This permutation of the rows and columns of the Hamiltonian

results in more of the nonzeros being stored closer together on each processor, so the sequence of accesses to the input

17

and output vectors are more respectful of data locality. The reduction in cache misses leads to better performance.

4.3 The impact of multi-level partition on the efficiency of Hamiltonian construction

In Table 2, we show how the performance of the Hamiltonian construction is affected by using successively refined

multi-level partitions in our recursive blocking scheme for 16O, Nmax = 8, with two-body interactions. The numbers

reported in the table reflect the work done on a representative off-diagonal processor in a 12, 090 processor run, with

each row in the table corresponding to a multi-level partition with the specified number of levels. For each successive

row in the table, a finer partition is added, further reducing the number of individual pairs of matrix elements that

need to be tested to identify nonzeros of the Hamiltonian. The number of these bitwise comparisons performed

among many-body basis states contained in the lowest-level nonzero blocks are recorded in column 3, and the total

numbers of block (g-tuple) comparisons performed at 1 through ℓ levels are recorded in column 4. We can clearly see

that as we increase the number of partition levels, the number of matrix element comparisons decreases dramatically.

At the same time the number of block comparisons, which indicates the overhead required to achieve such a small

number of matrix element comparisons, increases. There are over 4.1 × 1013 matrix elements on this processor, so

even using only the two coarsest levels of blocking, the amount of work done is reduced by an order of magnitude.

Number of levels seconds matrix element comparisons block comparisons

2 29,996 1.9× 1012 1.7× 108

3 4,630 3.0× 1011 5.6× 108

4 1,483 7.6× 1010 2.1× 109

5 1,251 3.0× 1010 5.5× 109

Table 2: Performance statistics for successively refined multi-level partitions for 16O, Nmax = 8.

4.4 Parallel scalability of the new MFDn

Figure 9 shows how the overall performance as well as each component of the new version of MFDn scales with respect

to the number of processors used for 13C with Nmax set to 6. We define the speedup factor as the ratio between Tncpu

and Tbase, where Tbase is the wall clock time required to complete the entire MFDn run or one particular component

of MFDn on 13C on 2, 850 processors and Tncpu
is the wall clock time required to complete the computation on ncpu

processors. We observe that total MFDn timing scales superlinearly with respect to the number of processors when

fewer than 4, 950 processors are used. The superlinear scaling is primarily due to the significant improvements in the

Hamiltonian construction (less recomputation of intermediate quantities) and many-body basis state setup phases of

the calculation. It is also clear from the figure that the Lanczos iteration has a perfect linear speedup. This is due to

a good load balance achieved by cyclic distribution of the many-body basis states, and effective orthogonalization.

We should comment that this part of the calculation, which is dominated by floating-point operations, typically runs

18

at 20% of the peak performance. However, the overall flops count of MFDn is much lower due to the large number

of integer operations performed in the Hamiltonian construction and a significant amount of I/O operations. We

observe that the I/O operations, which does not yet scale with respect to the number of processors, represent a

small fraction of the total computational cost when the number of processors is relatively small (below 5000). As

the number of processors increases, the sequential bottleneck of I/O operations becomes more pronounced. It is

ultimately responsible for suboptimal overall performance of MFDn for ncpu > 5000.

Figure 9: Scalability of MFDn.

5 Concluding remarks

We have described several techniques that help accelerate the computational speed of MFDn for nuclear structure

calculations on massively parallel computer systems consisting of thousands or tens of thousands of processors. In

particular, we demonstrated how many-body basis states can be generated and distributed in parallel. This new

generation scheme not only reduces the setup time for FCI calculations significantly but also ensures that a good load

balance is maintained during the Hamiltonian construction and eigenvalue calculation phases of the computation. We

also showed that the amount of work required to determine the nonzero structure of the Hamiltonian can be reduced

significantly by using a multi-level blocking scheme that can quickly identify a block of zeros by a single comparison

between a pair of block identifiers. This multi-level blocking scheme also appears to improve the data locality of the

distributed matrix Hamiltonian and results in performance improvement of the matrix-vector multiplications used

in the Lanczos iteration.

The choice of a multi-level single-particle state partition, which ultimately determines the block structure of the

Hamiltonian, is currently determined manually prior to each calculation based on intuition and experience. We will

investigate strategies for choosing an optimal partition of the single-particle states during runtime in the future.

19

The cyclic distribution of many-body basis states, which we currently use in MFDn, allows the nonzero elements

of the Hamiltonian to be distributed nearly uniformly among different processors. However, this distribution scheme

has the tendency of destroying dense blocks of nonzeros. We plan to explore the possibility of using block cyclic

distribution to further improve the memory locality of the Hamiltonian.

In addition to seeking implementation strategies that will take advantage of the memory hierarchy and other fea-

tures of high performance computers, we will also explore alternative algorithms for eigenvalue computation. In par-

ticular, we will investigate the possibility of using the locally optimal preconditioned conjugate gradient (LOBPCG)

algorithm [2], which computes the desired eigenvalues and eigenvectors by solving a constrained minimization prob-

lem. The key to the potential success of using this method lies in identifying an effective preconditioner that would

limit the total number of LOPCG iterations to 20 or less, and this is part of our future investigation.

References

[1] Iain S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix collection (Release

I). Technical Report RAL 92-086, CERFACS, Chilton, Oxon, England, 1992.

[2] A. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate

gradient method. SIAM J. Sci. Comput., 22(2):517–541, 2001.

[3] R. B. Lehoucq, D. C. Sorensen, P. Vu, and C. Yang. ARPACK: An implementation of the Implicitly Re-started

Arnoldi Iteration that computes some of the eigenvalues and eigenvectors of a large sparse matrix , 1995. Available

from ftp.caam.rice.edu under the directory pub/software/ARPACK.

[4] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue

Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

[5] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, 1980.

[6] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix

Analysis and Applications, 13(1):357–385, January 1992.

[7] J.P. Vary. The many-fermion dynamics shell-model code, 1992. unpublished.

[8] J.P. Vary and D.C. Zheng. The many-fermion dynamics shell-model code, ibid., 1994. unpublished.

[9] S. Wong. Introductory Nuclear Physics. Prentice-Hall, Englewood Cliffs, NJ., 1990.

20

